
'F f- #-PARALEL LISP STMULhfoicu) IS TA N Tuv Gm1/1
COMPUTER SCIENCE J S WEENING MAY 88 STAN-CS-88-1286
td66639-84-C-821i

UNCLASSIFIED F/G 2/5 Um17~E~hiEEohmhEmhEmhhI

1i 25 11111114

liii'-i I-II ii
f* 'I: R-I

Emma]= ffIm; mo

May 1988 Report No. STAN-CS-88-1206

(0

wt A Parallel Lisp Simulator

by

Joseph S. Weening

Department of Computer Science

Stanford University

Stanford, California 94305

DTIC

KLEC7
JU/ 18

DITR~bIO ~A~MED

Appro.....or.publi.....NJ
Distributio Unimte

m; YC -ss.;C*aO% 09 S PA~i

;OrM APProvedREPORT DOCUMENTATION PAGE OMB No 0704 .0188
___ Di Ore Jun30., 7986

aREPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
unclassified

2a SECjRITY CLASSIFIC.ATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT
Approved for public release:

2o DEC LASSiF CATION /DOWNGRADING SCHEDULE Distribution Unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

STAN-CS-88- 1206

6a NAME OF PERFORMING ORGANIZATION I6b OF;CE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Computer Science Department (if ao~icable)

6C. ADDRESS (City, Stafe, and ZIP Code) 7b ADDRESS(CidV State, and ZIP Codt)

Stanford University
Stanford, CA 94305

a NAME OF FUNDING i SPONSORING 8 b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if apolicable)

DARPA I
aC ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK tWORK UNIT
1400 Wilson Blvd. ELEMENT NO. NO, NO ACCESSION NO

Arlington, VA 22209 I
I1I TI TLE (Include Security Cassification)

A Parallel Lisp Simulator

12 PERSONAL AUTHOR(S)
Joseph S. Weening

3a TYPE OF REPORT i 3b TIME COVERED 14. DATE OF REPORT (Year, ot. a)1 PAGE COUNT

IFROM TO 'May 1988 27

16 SUPPLEMENTARY NOTATION

17 COSAT' CODES 18 SO~jECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SuB.GROUP

19 ABSTRACT (Continue on teveis*p of necessary and identify by block number)

.>CSIM is a Simulator for parallel Lisp, based on a continuation passing interpreter. It
models a shared-memory multiprocessor executing programs written in Common Lisp, extended
with several primitives for creating and controlling processes. This paper describes the

4 structare of the Simulator, measures its performance, and gives an example of its use with
a parallel Lisp program. - r <* .,.

20 DItSTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

C UNCLASSIFIEDIUJNLIMITED [0 SAME AS RPT O TIC USERS

%~a'AME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Includie ArtaCoe 22c OFFICE SYMBOL

DO FORM 1473. 84 MAR 83 APR ed.1om may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All oth of editions are obsolete.

A Parallel Lisp Simulator

Joseph S. Weening*

Abstract

CsIM is a simulator for parallel Lisp, based on a continuation passing interpreter. It
models a shared-memory multiprocessor executing programs written in Common Lisp,
extended with several primitives for creating and controlling processes. This paper
describes the structure of the simulator, measures its performance, and gives an example
of its use with a parallel Lisp program.

Research supported by Defense Advanced Research Projects Agency contract N00039-84-C-021 I and a
fellowship from the Fannie and John Hertz Foundation. The views and conclusions presented in this docu-
ment. tre those of the author andi sould not be interpreted as representing official policies, either expressed
or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

ISl , Il i i J l 1r

1 Introduction

This pa per dIesc ibes it siiua tor for parallel Lisp. called ('si m The '*(-C st a ms for coil I -

nat ion passig. wic Iis tile basic progiainn g tech niq lie t ha t thle s]iI iha to 01ses to iomlel
mu tlt iprocessin1g. CSi m is written in Commnon Lisp) ani(runs onl several1 systemns. It p~rovides
thme following facilities:

*In the ab)sence of aii actual multiprocessing svsteii (s(i M can l)e used1 as a t ('St bed
for parallel Lisp p rogra ills.

e Thme user can investigate the effects of varYing paranieters in a parallel eiiviromilnt.
such as number of processors, cost of process creation, and contentioni for resourices.
Usiiig CsimN, one canii odify these p~aramneters beyond the ranges in currently available

ha rdw~are.

9 Cs imN allows mietering and p~erformnce (lebuggiu g of programs withlout miod ifviug
themn or changing their execution environment. This is easier to do with a simulator
thani onl a real1 machine.

Csim wats used extensivelY by the Qlisp project a~t Stanford until an initial imlplemeitat ion
of Qlisp became available. and continues to be a valuable tool in our study of parallel Lisp

p~rogrammi ng.

2 The parallel machine model

Our machine model is a MLMID (mrultiple-inistruction, miultiple-data) computer with iden-
tical processors and uniform access shared menmorly. In such a. system all dlata ob~jects are
stored1 in a. single addlcress space. andl access to any location in the address space b)*y ainy'

processor takes roughly thme same amount of time. These features combine to ensure that
there is no benefit or penalty for storing data in any par ticular location oi runining codle oii

any paiticulaxr processor.
Although it is currently difficult to build a computer that is faithful to this mnodel and

ha~s mode than a few dozen processors, there is an emnerging consensus that shared niemmorv
is anl app~lropriate model given the current stat~e of the p~rogramnming art. D~evelopmniit of
shared- nenory multiprocessors therefore continues, and our results should be applicable
to such machines with large numbers of processors if they emerge, as well as the currently
available class of small- and niedium-scale multi processors.

Another major assumption we make is tha~t control of parallelism is explh(ici: priogiuaii-
iners can indlicate what computations are to be performed in parallel, while thle (defauilt is
sequential execution. This is not to preclude programn-transformnation tools that nimay (hel (WI

lparalleisin in ordhinary (sequential) programns and~ p~rodumce parallel progamins; on r parallel or
* Lisp can serve a~s file t ai-,gol laniguiage for siicli tools.

In omi1 iplrograumm in ig model , processes are createdh at run time, anid the (lecisioii to creatc
a. process mnay* be conditional. We will iiot say much here about, how such (lecisions Inay' be
useful lY ni ade: I Ii is paper is inain*v mi l escription of the implementation of our sitiul a tor. I

Several proposals for changes to Lisp to accoiiiodle such a lprogramiiiii g modlel hiave
b~een miad(e. stimcli as Qiisp [3], MNi iliisp [5]. anmd NI ltiScheme [7]. While t hese d ial(ck of -
Lisp Ii ffem inl sy mitl an md t~o so(.me exteiit ill tilt, seian tic power of the featumres tI heY previde. n/ _

ty Codes
Av1and/or

eric i~t fSpecial
co"

1INPEO

9 i

they-N all agree N0i tlhe ,hared-ntirnory p)1i10501)l1v iliat we have (lescribed. in Csim w~eI
provide su~pport for several of thev Qlisp anrd NIuiltilisp forins that we have founrd useful in
writing parallel programs.

The goal of the Qlisp project at St anford is to pro~duce a coniljilet anld run-time systenm
for parallel Lisp, that. will be usedl oin an actunal miultiprocessor for serious applications. Csims.,
however. is anm interpreter running oin at single processor and~ muodelinig a. in iiltipr~ocessor. In
this approach there is aim inherent tradeoff betw\eenr the speed of thle simnuat ion andl its
degree of realismn. We(have chosen at iidle ground that we b~elieve wvill accu ratelv model
the issues in parallel programmning thial we want to investigate.

3 A continuation passing Lisp interpreter

As an int roduct ion to thle St.'yle in wvhichr (?sI m is written, we describe here a slimple con-
tirna tiori passing interpreter for a subset of Coninion Lisp. Readers failiar with tile
continuation psi- Sleo rpralnn Ia wslto ski1) this section.

Writing a Lisp interpreter in Lisp is easier thian thle equivalent task in most other]ln-
guages, for several reasons. First, the representation of Lisp programs as Lisp data. greatly
sinilplifies syntactic analysis. More importantly, the interpreter call be "metacircular," using
parts of the envirotnment, in whichi it runs t~o simulate the samie constructs inl thle language
being interpreted. T]his lots us- focuis on the p~arts of the evaluation process that are of
interest. (See [I] for a. discussion of netacircular interpreters in Schemne, a simple dialect of
Lisp. Our examples will all he based onl Common Lisp.)

The mnain function of the interpreter is eval, wvhich takes a form (a Lisp expression
reprseninga prolgrami) and an environment, (a data structure representing the values of

variablles). andl returns the vatile of thle form in the environment. It usually looks something
like this:

(defun eval (form env)
(cond ((symboip form)

(lookup-variable form envl))

((atom form)
form)

((special-form-p form)

(t (applyi (first form)
(eval-list (rest form)))

(defun eval-list (formlist env)

(if (null formlist)
nil

(cons (eval (first form) env)

(eval-list (rest form) env)

[ri progrnin is not. yet corniplete. lin place of the '. . . ' must be inserted code to handle
all of' Lisp's Special forms. We also need a (definition of the representation of environments,,
and we need t~o definle Ime functions lookup-variable and apply. Trhese involve details
tiat are, niini mportau t. at this point.

2

T i. abhove i iiterpreter is a. hInctioiia! program., anid its IIiniti11W behavior follows thle
p~ait eri of hiiiict ioni calls a iid rettuinis ini the progra n beig i iterlpret ed. For a sn bset of

Liprest rict ed to funlctionial conlstruicts, Stich anl initerpreter is finle. However, it, becoiiies
icreasi gly hiard to iaintain the simiple structutre of the itlerjpreter as we add~ Coi mon
Lisp's special formls for sequencing (progn), iteration (tagbody/go or do). a iid iioii-loca I
re0t i kcatch/throw and(block/return-from), as well as the parallel conistruicts that we
will jit rodlice.

[-sim, cow iin nat ioms allo-ws uts to expanid the range of conistrructs that the initerpreter call
hiai die withI a iiia iiagea hle ilic rease iin the comiplexity of thle programn. C on t inationis, whIiichI
were orilnallY iiiveuitetl to (lefirne the semnantics of sequiential1 l)rograiiiininig coiistxruct s (see
[4] anid [10]). wore shown in (91 aiitl related1 papers to b~e a very co iivenien t pro~grai iii ig

tool as well.
A conitinuial ion is a ftiinctioii that represeiits "the rest of the progra ii" a tile initerpreter

proffresses. The interpreter's job) chtanges front "evalutate a formi inl anl eiviroiiwcii ad
returni the resuilt" to "evaluiate a, formn inl an environmient and~ call a. continuiation with the
result ." Usig continuation passing style,1 ouir exam lple beconies:

(defun eval (form env cont)

(cond ((symbolp form)
(funcall cont (lookup-variable form env)))

((atom form)

(funcall cont form))
((special-form-p form)

(t (eval-list (rest form) env

#'(lambda (args)
(apply (first form) args cont))))

(defun eval-list (formlist env cont)
(if (null formlist)

(funcall cont nil)
(eval (first form) env

'p. #' (lambda (first-value)

(eval-list (rest formlist) env
#' (lambda (rest-values)

(funcall cont (cons first-value
rest-values)))))

It is iniiportatit to niotice that the funrctions dlefined above b 'y lambda expressionis axe cdo-
mi ros: they coit~aiii free referenices to variables thia are lexically bounrd oiitside the lambda

* (x;)ressi~ons.
i a con thi i tioni passing hprograitn s cli a~s this oine, each funictioni tha~t is called wit I a.

(oi itinationi as all argu iiei-t. en (Is b)*y callig allot ier functioni, p)assi ng it. a iew continta lioin
If thle literl)reter is rut uisig an ordliary stack-basedl Lisp systemn, the stack will grow quiite

[liw reader familiar with coiitiniiatiott passitig style wvill notice that some parts of this code (to not pass
6 ~~(00Winw it ions: for inst ice the lookup-variable function. We (Io this to improve Ihle perforniaiice of the

inti (rrTer~ IIY crea tijng fewer innecessary clostires.

large, and any program doing a. non-trivial amount of work will cause the svstem to run
out of memory. To avoid this, the Lisp system in which the interpreter is rium must detect
tail recursion and cause stack space to be reused whenever such a call is encotiittered.
While coding the interpreter, the programmer must ensure that all functions called with

continuations are tail- recursive.
Let us go through a simple example to illustrate how the continuation passing interl)reter

works. Suppose we want to evaluate the expression (+ x 3) and plrint the result. Previously.
we would have said

(print (eval '(+ x 3) *top-level-env*))

where *top-level-env* is used to hold the "top-level" environment of values assigned to
global variables. Let. us assume that it associates x with the value 4. With the contintation
passing interpreter, we say

(eval '(+ x 3) *top-level-env* #'print)

This call to eval examines the form (+ x 3). It is not an atom or a specia.l form, so it
results in a, call to

(eval-list '(x 3) *top-level-env*
#'(lambda (args) (apply #'+ args #'print)))

The quoted expressions in the above call and the rest of this example are used to represent
the values that will actually be passed. The original continuation #'print has become part
of a new continuation (the lambda expression above). Eval-list now calls

(eval 'x *top-level-env*

#' (lambda (first-value)
(eval-list '(3) *top-level-env*

#' (lambda (rest-values)
(funcall #'(lambda (args)

(apply #'+ args #'print))
(cons first-value

rest-values))

which has constructed a. new continuation that contains the old one buried inside two levels
of closures! But now we have called eval with an atom, and it calls

(lookup-value 'x *top-level-env*)

to find the value associated with x in *top-level-env*. This will return 4. Then eval
will call

(funcall #'(lambda (first-value)

(eval-list '(3) *top-level-env*
#' (lambda (rest-values)

(funcall #'(lambda (args)
(apply #'+ args #'print))

(cons first-value rest-values)))))

* 4)

4

0

This becomes

(eval-list '(3) *top-level-env*

#' (lambda (rest-values)
(funcall #'(lambda (args) (apply #'+ args #'print))

(cons 4 rest-values))))

so we are making some progress. After several more steps similar to those above, tile
interpreter will call

(funcall #'(lambda (args) (apply #'+ args #'print))

(cons 4 '(3)))

and finally

(apply #'+ '(4 3) #'print)

The continuation passing version of apply (which we haven't yet defined) will call the
continuation #'print with the result of applying the function #'+ to the argument list

(4 3), so we will finally call (print 7) and see our answer.

4 An interpreter for Common Lisp

We now extend the simple continuation passing interpreter to one that accepts almost all of
Common Lisp. This will be the basis of our parallel Lisp simulator. To avoid discussing var-
ious unimportant details, the code described in the next few sections is often a simplification
of what actually appears in CsIM.

4.1 Environments

Symbols in Common Lisp programs refer to values based on the rules of scope and ext ent
as described in [8], ch. 5. While it would be possible to pass in a single env variable
all of the information needed to resolve any symbol reference, Csim divides the kinds of
references into two classes, lexical and dynamic, and uses variables lex-env and dyn-env
to store different parts of the environment. The pragmatic reason for this separation is that
a call to a new function defined at "top level," which is a frequent occurrence, uses none
of the lexical information present in its calling environment, but retains all of the dyflamic
environment.

Lexical environments are represented by structures with four components:

* variables that are lexically bound, for example as function parameters or by let.
What is actually stored is an association list (alist) of (variable . value) pairs. Since
lexical binding is the default in Common Lisp, most variable references will be found
here.

* functions defined by flet or labels. This slot contains an alist that associates each
name with a lexical closure (see definition below), since lexically bound functions can
have free variable references.

111 1 1 1 1 1 N I

0M

" blocks defined by block. Also contains an alist, which is described in more detail in
section 4.4.

" tagbodies defined by tagbody (or implicitly by prog, do, etc.) This slot, contains a
list, each of whose members is the entire body of a tagbody form.

Lexical closures are represented hy structures with two components:

* function, represented by a lambda expression.

* environment, a lexical environment.

Dynamic environments are represented by structures with three components:

* variables that are *'special," and hence dynamically bound (al alist).

* catches, information about catch forms that have been entered and not yet exited.

* unwinds, representing unwind-protect forms that are pending.

A new environment is created whenever there is a new piece of information to add to an
existing environment. For example. to interpret a let form that binds lexical variables, we
uteate a new lexical environment structure, copy the slots that have not changed from the
existing environment (functions, blocks, tagbodies), and store in the variables slot an
alist that begins with the variables being bound and eventually shares the list structure
of the variables in the original environment. We create a new environment, rather than
change the slots in the existing environment structure, because the extent of each binding
in Lisp is finite and the binding must at some point be "undone;" the best way to do this
is to preserve the environment existing before the binding.

Sometimes we modify the data structures contained in an environment without changing
the environment itself. For example, to interpret setq we tnd a (variable . value) pair in
an environment and destructively modify the value part oi this cons-cell.

4.2 The global environment

CsiM does not use the environment structures just described to implement Common Lisp's
"global environment." consisting of values and functions assigned to unbound special vari-
ables (symbol-value and symbol-function). When simulating a reference or assignment
to an unbound symbol's value, we use symbol-value, which lets the simulated program
share the global environment of the simulator.

This makes using CSINM more convenient, because assignments to global variables can be
made in the ordinary Lisp environment and then be seen by simulated code, or vice versa.
Doing this for function definitions would cause difficulties, however (since CsIM provides
interpreted definitions for many of the predefined Common Lisp functions), so these are
stored on the symbol's property list.

4.3 Function application

Let us now look further into CsIM's apply function, which has been mentioned several
times but not yet defined. The role of apply is to take a function object, a list of argument

6

P ,I Ii I Il01 1 l

vai os. a lex ica aniidd yntamic enviro nment, and a co n t i iat ioi. an-l d to call t]lo (Ioec inni at Ion
with t lie result of the function applied to the arguinent.

'The Iuct ion objects that apply allows as its first argu itent fall into t lie rollowing classes:

I. Sybols naming primitive ('om muon Iisp functions. These functions are cal led directlh
by tie Simulator.

2

2. S mbols naming Common Lisp functions that must be treated specially. For exam pie.
ain instance of eval in code being simulated shoul result il a call to ('SIN s eval,
not the eval in the underlying Common Lisp.

:3. Symnbols naming functions whose definitions should be interpreted. CsiNt finds tie
definition for such a function on the symbol's property list, where it will have been
stored as a lamtbda expression by CSIt's version of defun, and applies it in a niuill
lexical environment and the current dynamic environment.

-1. Explicit lambda expressions. These are applied in the current lexical and dynamic
environment.

5. Closures. These are represented by structures containing both a lambda expression
and a lexical environment in which to apply it. The current dynamic environment is
used.

Applying a lambda expression is fairly straightforward. We create new environments
to contain the bindings of the lambda expression's variables. (Since some of them may
be special variables we may create both a new lexical environment and a new dynamic
environneitnt.) In the new environments, we associate the variables with the corresponding
values taken from the argument list to apply. Finally, we evaluate the body of the lambda
expression in the new environments. Since its value should be passed to the continuation
that was given to apply, we use this continuation in the call to eval for the body. A
skeleton of the code for this is:

(let ((new-lex-env ...)
(new-dyn-env ...))

(eval <body-of-lambda-expr> new-lex-env new-dyn-env cont))

lit tile actual simulator, the application of lambda eypressions is more complicated because
we interpret Common Lisp's &optional, &rest and &aux parameters, and avoid creating
new lexical or dynamic environments when not necessary.

4.4 Special forms

As an example of how continuations simplify the simulation of Common Lisp special forms,
let us look at the implementation of block and return-from. In a program such as

(block bl

(foo (block b2
(if p (return-from bl 7) 3))))

2 'The dynamic environment in which these calls take place will not correspond to the simulated dynamic
environment. The user of CSIM mnst. expect. dynamic binding of variables to affect only references that. are
interpreted by the simulator.

7

RSXM

if the value of p is nil, the inner block will return 3 and the outer block will compute
(foe 3). But if p is not nil, the return-from form will cause 7 to be immediately returned
.10om thle outer block and f oo will not be called. The symbol bi in the return-f rom matches
the name of the outer block because it is lexically contained within that block, but if the
inner block were also named bl then the return-from wouldI match the inner block's name.

Each lexical environment includes a blocks slot. To interpret a block form, we create
a new lexical environment: in the blocks slot of this environment we put a list whose first
element represents 'he block we are interpreting; the rest of the list is the blocks slot from
the previous environment. With the block name we associate the cont inuation for t lie block.
because this represents what we want to do with the value returned by the block, whether
it comes from the last form in the block or is supplied by a return-from.

The code to interpret a block form is therefore

(defun eval-block (form lex-env dyn-env cont)
(let ((new-lex-env (copy-lex-env lex-env)))

(push (cons (block-name form) cent)
(lex-env-blocks new-lex-env))

(eval (block-body form) new-lex-env dyn-env cent)))

and the code to interpret a return-from form is3

(defun eval-return-from (form lex-env-dyn-env cent)

(let ((find-block (assoc (return-block-name form)
(lex-env-blocks lex-env))))

(if find-block

(eval (return-expr form) lex-env dyn-env

(cdr find-block))
(error "No block for -S" form))))

When return-from is seen, the interpreter looks through the list of blocks in the current
lexical environment, which will have the innermost blocks listed first. It examines block
names (using assoc) until it finds one matching the name in the return-from. The contin-
uation that is associated with this block name is the one to which we want to pass the return
value. Therefore we end with a (tail-recursive) call to eval using this continuation. Note
that the cent argument to eval-return-from is ignored. This is because return-from
never returns a value to its caller; it always passes a value to some other continuation.

If no return-from is encountered in the course of evaluating the body of a block, then
the evaluation of (block-body block) will eventually call cent with a value, as expected.

Catch and throw are simulated in a very similar way. Catch saves its tag and continu-
ation in a new dynamic environment, and throw lo-!ko for the appropriate continuation by
matching its tag to those saved in its dynamic environment.

Unwind-protect is not hard to handle, although it must be coded quite carefully. The
main idea is that every time an unwind-protect form is evaluated, a, new dynamic envi-
ronment is created; its unwinds slot contains a list with the cleanup forms and the lexical
and dynamic environments in which they must be executed. Upon normal return through

3The code as shown here is incomplete, because it doesn't handle unuind-protect forms that. may have
to be evaluated as a result of a return-from. CSIM does handle this case.

8

_0 -

an unwind-protect theo ltIrw. are evahialed l i a straightforward wa v..\ iioii-local exil
(caused bi. throw, go or return-from) causes a change from the current d' iiamic etivi-
ronieui to i pieviolis dyiiaiiiic environnient. \hein this happens, we evaluate all of the
clealillp forlis a.,,,)cialed wit h elivirolllnetlls between the one we are leaving and the ole we

are rettiri inug to, ili the proper order.

Another imlprt at special lorii is setq. l'o the iionient, the tollowing code will suflice
to sinitilate (setq vat valne):

(defun eval-setq (form lex-env dyn-env cont)

(eval (third form) lex-env dyn-env
#'(lambda (value)

(modify-binding (second form) value lex-env dyn-env)

(funcall cont value))))

Modify-binding finds the association-list pair for the variable in the approl)riate environ-
nient and clianges the valne. Ili section 6 we will make some additions to this code.

Most of the remaining special forms of Common Lisp perform various operations oil
environmients: they are straightforward to implement so we omit them from the lescril) ion
here.

4.5 Multiple values

Sriioitioi Lisp's nimltiple valnes are snpported by CSlM . We have previonslv defined a
continnation to be a function of one variable, and simulated returning a value from a

Vf,,nction call by calling a continuation with the value that is returned. To allow multiple

values to be returned, we let a continuatioi be called with any number of arguments.
Instead of a function with one parameter, we let each continuation be a function with a

&rest parameter. When the continuation is called, the &rest parameter variable is bound
to a list of the argument values. It is then straightforward either to use just the first elemient
of this list when only one value is expected, or to use the whole list in the places that allow
multiple values.

The initial implementation of CSlM was done without supporting multiple values. WVh'en
it. came time to add this feature (because some programs that we wanted to simulate used
multiple values), it took very little effort to do so.

We will not mention multiple values in the remainder of this paper since in general they
are not relevant to issues of parallelism.

4.6 Tilming statistics

Up to now, we have not made CSINt do anything more than the Lisp system that it is built on.
The first feature that we will add is the ability to measure and record "simulated" execution
time. This meets one of our initial goals. which is to reflect the timing of computation oil
an actual or hypothetical machine.

We use a global variable *time*, which is initialized to 0 at the start of each "top-level"
call to the interpreter. Whenever CsiM performs an operation that reflects work in the
simulated machine, it adds an appropriate amount to *time*. (Section 8.1 explains how
the basic timings are chosen.) When the computation is done, we can see how miuch work
our simulation correspondel to.

9

0A

A benefit of the simulator is that we can gather some statistics that would be hard
to obtain in a real machine without affecting the timings. For example. we keep track of
how much work is spent in each function. in addition to the total work done. This cannot
generally be done on standard hardware wit hout, for instance, having the compiler generate
additional code at each function entry and exit: this extra code will affect the statistics.
Worse, from our point of view.. it will affect the relative timing of' activity in a parallel
processor and possibly change the amount of speedup for the program.

Csi,%i keeps track of time spent in functions itt three different ways. Tile first is the time
slpent in each function exclusive of the functions that it, calls. These timings will addI up to
the total tnite spent in the program.

A more useful statistic is obtained by counting all of the computation done in a. function,
including functions that it calls. When a finction recursively call- itself (either directly or

with calls to other functions interventing), we must decide whet her to clta rge it. only once, or
once for each call. CsiM actually does both. because a. different useful measure is obtained
each way. These are the second and third sets of function timings.

The information needed to compute these timings is stored in extra slots in each dynamic
environment structure. One slot contains the name of the current function being simulated;
it is used lo charge tiile to just that function. The second slot contains a list of all function
calls currently in progress. The ditird slot, contains such a list, but with each function
appearing only once.

When a basic operation is simulated, CSIM adds its simulated time to the time for the
current function, and the times for functions in the two lists. For each of the three statistics
there is a hash table indexed by the function's name and containing its accumulated time.

After a top-level form has been simulated, CsiNi optionally prints the timings. The
timings for functions in which recursive calls are counted more than once are not useful by
themselves (sone may be nore than 100%X of the total simulated time), but when divided
by the number of calls to the function, they give the average time spent in that function.

For example, suppose we have the sequence of calls

FO0 FO0 - FOO -BAR,

in which each call to FOG takes 10 steps before calling the next FOG or calling BAR, and the
call to BAR takes 40 steps. Thus the total computation takes 70 steps. The first statistic
would show 30 steps spent in FOO and 40 steps spent in BAR.

The second statistic wotld show 70 steps spent in FOG (since all the work is done within
the toplevel call to FO0). and 40 steps spent in BAR. The third statistic would show an

average of 60 steps spent in FOO, since 70 steps are charged to the first call, 60 to the

second. and 50 to the third. It would also show 40 steps spent in BAR.

Section 9 will describe how we use these statistics.

5 Parallel Lisp constructs

Parallel Lisp programs are executed on a shared ieitory nuiltiprocessor by means of a

process qaeiie. a data. striictire containing processes. which represent, corn pu tat ions that

may he)erformed in parallel)v the processors in the system. (Although we refer to it as

a "q miene." another data strutuiire inay prove Jto beI a)etter choice.)

01

I0

P~rocessor,; that are idle wvill remove processes I'roini the queue and execute thim; a1
r iii i process5 iiav generate new\ processes and pu t them oni the queuie. kk lin a process

fiiihes, the processor running it becomes idlle agaii ina(l will took for another process to
ruit. A process wnax also wait for an) evenit, causing it to be suspendled and~ nmaking its
lProCe"Ssor Idle.

T here have been several p~rop~osedl extensions to Lisp t~o Support this iiiodel of colnpu-
tar ion. Csi1M provides the following constructs:

1. Qlisp's qiet (blothI regular anmd eager forms) anmd qlambda. described] ini [3).

2. Xlultilisp's future, dfuture and touch, (defined in [5].

3. Siminpie test-and-set locks (busy waiting).

W\e (t0 not yet supp1ort the extensions to catch andl~ throw defined by Qlisp. (Their ilicaning
is c(Irre ntl 'v beinag revised.)

M ultilisp's future and dfuture, and the eager form of Qlisp's qiet, use aspecial kind of
datai object called a "future" (or sometimes a "promise" or "placehiolder"), which represents
the un tde termin ted value of an expression that is being computed in another process. Lisp
operations that (10 not (lepend on the values of their operands (in a well-defined sense)

* treat a future just as any other data object. A future ca~n be passed as an argument to a
function, returned as a value, assigned to a variable, or stored in a data structure; n]one of
these op~erations depend on its value.

Most of the primitive operations of Common Lisp (10 depend on the values of their
op)erandls, however, so whenever one of these primitives is called the future is said to be
toIaclied. This causes one of two things to happen: either the process computing the future's
value ha~s finishied, in wvhich case the value is available to the process touching the future,
or thle process has not finished; then the touiching process will be suspended, and when the
value is av.ailable it mnay be resumfedl.

The use of futures is not without some cost, especially on processor architectures not
(lesignn(1 to silpport them. The primitives tha~t need to touch their arguments must all

perfo'un addcitional work even when those arguments are not futures (just to check whether
thli 'v are). -and every reference to a, future costs more, often even after its value has been

detrmie~l CSM. y assigning varying costs to these operations, can indicate how much
of a perforina lice penialty this is.

Locks are p~rovidled a~s a low-level synchronization primitive for two reasons: first, they
0 are hetter suited for certain parallel algorithmns than futures (particularly for "in-place"

algorithuits thuat dlest ructively modify data, structures); and they are needed to write the
sched uler, as dlescrib~ed in section 6.2.

5.1 Scope and extent issues

The diefinuitions of scope and extent for variables and other objects in Coinnon Lisp require
somum reiniterp~retation in parallel Lisp. This wa~s forseen in [8, p. 38], where Steele writes:

lBehind~ the assertion that dynamic extents nest properly is thle assumption tha~t
there is only one programn or process. Common Lisp does not address the prob-

* leis of inn ltiprogra~mniing (timesharing) or multiprocessing (more than one ac-
tivi, processor) within a single Lisp environment.

We have chosen the following policies:

* Lexical variable references behave the same as in Common Lisp, even if the binding
of a variable is in a different process from the reference. Thus, in

(qlet t ((x (let ((v 5)) (foo v)))
(y (let ((v 4)) (bar v))))

there is no relation between the binding of v in the two processes created by qlet,
while in

(let ((v 6))
(qlet t ((x (foo v))

(y (bar v)))

the two references to v are both to the binding established by the let. If one of the
processes used setq to change the value of v, the new value would be seen in the other
process (and in the body of the qlet).

If the parameter t in qlet is changed to ' eager, then the process computing the body
may return from the qlet even though the processes computing the bindings are still
running. In this case, the variable v must remain accessible to these processes. (The
same situation can occur if future is used.)

CsIM has no problem implementing this, because it uses list structure to store lexical
environments and never explicitly deallocates them. (They are garbage collected once
they are no longer needed.) An efficient parallel Lisp implementation might avoid
allocating environments when possible, but will have to use a lexical closure to allow
the passing of bindings from a parent process to a child in this manner.

The dynamic environment of a process cannot be changed by other processes, even
when a binding is undone in a process. If we change our first example to

(defvar v)

(qlet t ((x (let ((v 5)) (foo v)))

(y (let ((v 4)) (bar v))))

then the two bindings of v are independent, even though they may occur concurrently.
The "shallow binding" technique used by many Lisp implementations does not do the
right thing in this case; each process would try to store its new value for v into a
shared global value cell. Deep binding, on the other hand, does work correctly if each
process is provided with its own stack for bindings, and inherits the bindings of its
parent process. However, in the case

12

0i

(defvar v)

(let ((v 5))
(qlet 'eager ((x (foo v))

(y (bar v)))

we want the binding of v to be accessible to tile processes created 1)y tile qlet even

after the qlet returns. This is a problem, zince the process that established tie
binding now will undo it. In a stack-based implemientation of dynamic binding, even
with deep binding, this will not work. CsiM uses list structure to implement its
dynamic environments, just as with lexical environments, and hence does what we
want.

6 Simulating the parallel machine

Our main concern in simulating a multiprocessor is that we accurately model the order of
reads and writes to the shared memory. Although parallel programs that share data gen-
erally use synchronization constructs such as futures or locks, we want to produce realistic
results for programs that make unsynchronized memory references. (Among other benefits,
this will help us find bugs in programs that do not use correct synchronization.)

In sections 3 and 4 we described how our single-processor interpreter keeps track of it's
progress using continuations. This takes the place of the "control stack" in an ordinary
interpreter, and conseqaently it is very easy to capture the interpreter's state. This design
lets us have an interpreter for each processor in the simulated machine, and switch between
them whenever we want.

We do this by introducing a new kind of continuation, which we call a process contin-
uation. Process continuations are closures with no parameters; their purpose is solely to
capture the lexical environment of the interpreter at a point where we wish to switch the
simulation to a new processor, so that we can later resume the current processor's simula.-
tion. (In [11], continuations created by catch in the then-current version of Scheme were
used for much the same purposes as our process continuations.)

For example, the code to handle setq that was presented in section 4.4 is modified in
the parallel simulator to

(defun eval-setq (form lex-env dyn-env cont)
(eval (third form) lex-env dyn-env

#'(lambda (value)

(switch-processors
#'(lambda ()

(modify-binding (second form) value

lex-env dyn-env)

(funcall cont value))))))

where switch-processors is a. function that does what we have been describing. Its ar-
gument is a process continuation that captures the necessary parts of the simulator's state
in its free variables. Calling the process continuation will resume the interpretation of the

13

0n

setq form. but the switch-processors function can defer this call until the appropriate
time to do so.

Process waiting is also simulated using process continuations. When a process needs to
wait for ait event (such as a future's value being determined, or to call a qlambda process
closure), the simulator stores a process continuation representing the work to be done after
that event happens, in a. data structure associated with the waiting process. Calling the
process coutinuation resumes the suspended process.

6.1 Processors

The variable *number-of-processors* is used at the beginning of each top-level evaluation
to determine how many processors to simulate. Each processor is always running a process,
possibly an "idle" process. A processor is represented by a data. structure containing its
current process and its current simulated time.

The simulated times are the key to deciding when to switch the simulation from one
processor to another. As long as CsIM performs operations that can have no effect on pro-
cessors other than the current one, it continues to simulate the same processor, incrementing
that processor's time.' The only operations by which one processor can affect others are
those that read or write data in shared memory. To make sure that these operations are
done in the correct order, CSIM enforces the following rule:

Any operation that can affect other processors must be done when the current
processor's time is the lowest of any in the system.

To see why this works, consider two processors, P and P2 , that perform shared-memory
operations at times t1 and t2, with tl _< t 2 . Without following the rule above, we might run
the simulation of P2 beyond time t2 before we have simulated P at time tj. This would
be wrong: for instance, if P1 's operation is a write and P2 's is a read of the same memory
location, then we would not read the correct value. (We call this a write/read conflict.
Read/write or write/write conflicts cause similar problems.) However, because of the above
rule this cannot happen. When we see that P2 is about to perform a memory operation a.t
time t2, we stop its simulation. We do not restart it until has the lowest simulation time of
any processor (or is equal to others with the same time). At that point, P must have been
simulated past time ti, because if it hasn't been, then its time is less than t] and tj !< t2,
so P2's time isn't the lowest.

0 What this does is serialize all of the shared-memory operations that can cause one
processor to affect another. We do this for unsynchronized memory operations (i.e., ordinary
reads and writes) as well as synchronous operations such as acquiring locks. This ensures
that our simulation corresponds to the order of operations that would occur in a real
multiprocessor. However, we do not place any restrictions on shared-memory operations

* performed at the exact same time by two processors. The results of these are unpredictable.
Serialization is implemented by means of a priority queue (called the "run queue") that

holds the structures representing processors, sorted in increasing order of simulation time.
When the interpreter is about to perform a shared memory operation (for instance, at the
call to switch-processors above), it updates the data structures for the current process

4 Actiall,, it. increments the global variable *time*, and will store its value back int-o the processor's
structure before switching to a new processor.

14

land processor and inserts the processor into the run queue. Then. the processor with the
lowest simulation time is removed from the run queue and its simulation is resumed.

CsikM's serialization method was chosen because it is easily to implement and prove
correct. Since CsiM does not itself attempt to do work in parallel, this is a reasonable
choice. Serialization would become a bottleneck if we were to try to speed up CsIM by
having it simulate several processors at the same time, and we would probally need to use
a more sophisticated mechanism, such as the "time warp" system described in [6].

6.2 The scheduler

As described at the beginning of section 5, we assume there is a queue or some other data
structure to hold processes that are ready to run. We call the code that maintains this data
structure the scheduler, since it decides in what order the processes will run.

Scheduling algorithms are one of our objects of study, and we do not want to build one
into the design of our simulator. Instead, we want to make it possible for a user of the
simulator to write a scheduler in ordinary Lisp code (not in continuation passing style).
CsiM models the execution of the scheduler by simulating it in the same way as other Lisp
co(le.

The scheduler consists of two functions:

" add-process is called whenever a new process is created. It is given a process as its
argument, and inserts it into whatever queue or other data structure is being used to
schedule processes.

" get-process is called whenever a processor is idle. It finds a process to run and
returns it.

When a processor becomes idle, the simulator creates a temporary "idle" process in which
the call to get-process takes place. (Since this call is interpreted, there must be a process
for it to run in.) Upon return from get-process, the new process replaces the idle process.

Currently, CsiM gives the user a choice of two schedulers: FIFO and LIFO. These both
organize the runnable processes into a single list; their difference is in which process is
chosen by get-process. The FIFO ("first-in, first-out") scheduler takes the process that
has been in the queue for the longest time, while the LIFO ("last in, first out") scheduler
takes the most recent process.

*LIFO scheduling, while perhaps counterintuitive at first, has been found to often perform
better than FIFO scheduling. Halstead [51 discusses this in some detail, and argues for a.n
"unfair" scheduling policy as a way to reduce memory usage.

LIFO scheduling also allows some optimizations in process management.

1. When a process is about to create a child process and immediately wait for its result,
0 a.s in the (qlet t ...) construct of Qlisp, it can perform an ordinary function call

instead, since there is no reason to put a. process on the queue, make the processor
become idle, and have it then remove the same process right away.

2. When a process finishes and has a list of waiting processes to wake up, its processor
can put all but one of them on the process queue and run the last one itself, since it
otherwise would become idle and immediately choose the last process that it added.

15

011 111 1 1

Csim has a flag that is turned on by the LIFO scheduler, and turned off by the FIFO
scheduler, which enables these optimizations. This interaction between the scheduler and
the simulator is needed because creation and termination of processes are simulated directly,
not interpreted as the scheduler is.

The FIFO and LIFO schedulers just described both suffer from potential contention for
the various locks on the process queue needed to ensure correct operation. We are therefore
looking into the use of more sophisticated schedulers that distribute the runnable processes
among several queues. In many cases a single-queue scheduler is sufficient, since our goal is
to create processes of a large enough granularity so that scheduling does not happen very
often. As the number of processors we simulate increases, however, the process size must
also increase to avoid contention, and this may reduce the potential speedup of a program.

6.3 Processes

A process is represented by a structure containing its current process continuation, a flag
to indicate whether it has terminated, and a list of other processes that are waiting for it (if
it has not yet terminated). When interpreting a form that creates a process, such as qlet
or future, the simulator calls a function create-process defined as follows:

(defun create-process (form lex-env dyn-env new-cant cant)
*(let ((new-proc (make-proc

:pcont #'(lambda ()
(eval form lex-env dyn-env

new-cnt)))))
(call-user-function 'add-process (list new-proc)
#'(lambda (v)

(funcall cant new-proc)))))

The form argument is what the new process will evaluate, using lex-env and dyn-env
as its initial environment. New-cont is the continuation that the new process will call
with the value of form. Cent is the continuation for the parent process. The call to
call-user-function tells CSIM to interpret the definition of add-process with the new
process as an argument, and pass the result to the specified continuation. This continuation
returns the new process to the parent, which may have a need to refer to it. (For instance,
qlet may wait for the new process to finish.)

The continuation new-cont called by the new process is always written to end with a
call to the function finish-process, which wakes up any processes that have decided to
wait for the given process to terminate. It does this by calling add-process on each of
these. After this, the process is done. Its processor becomes idle and will try to find a
new process. If we are using the LIFO scheduler described in the previous section, then
if there were waiting processes we switch directly to one of them, avoiding a call to both

0 add-process and get-process.

6.4 Process closures

Qlisp defines a new type of object called a process closure, which provides both concurrency
and synchronization. A call to a process closure may proceed without the caller waiting for
the result (but only when the call is in a position where the result value is ignored). Calls

16

0NJ

to each process closure a re serialized: if one ha ppens while a previous call is still in progress.
it is put on a queue.

At, present, Cs[i imiplerments only the syrrchronization features of process closures. To
do this. we represent a process closure by a structure containing a (first-in, first-out) queue
of waiting pio',sses and a closure. XV'hen a process closure is called, the calling process is
added to the queue. if it. is the only one there, it proceeds by calling the closure. Otherwise,
its processor becomes idle and calls get-process as described above.

WIren the call to the closure returs, the simulator removes the current process from
the process closure's queue. If there are now other processes waiting on the queu', it calls
add-process to resume the first one.

7 Miscellaneous details

In the previous sections, we omitted certain details in order to simplify the presentation.
This section explains several of them.

7.1 Use of symbols

We find it convenient to have the interpreter share symbols with its underlying Common
Lisp environment. As mentioned in section 4.2, the values of unbound special variables are
shared between the simulator and the program being simulated. Other information about
symbols is kept on their property lists, using the following property names:

* cexpr is the lambda expression for an interpreted function definition. Cs 'Is version
of defun sets the value of this property.

* csubr is a function to handle a special form. It is called by Csim's eval to handle such
a, form, with the form, the current lexical and dynamic environments, and the current
continuation as arguments. The defcsubr macro defines such a function. This makes
the code more modular, since we do not need to enumerate all of the special forms
inside eval.

* esubr is a function to handle a primitive Lisp function that cannot be called directly,
such as apply, because its operation needs to be simulated. The arguments to a.n

esubr are evaluated normally before the function is called.

* cinfo is a list whose car is the number of time units that the simulator should charge
to interpret the function or special form named by this symbol, and whose cdr indi-
cates which arguments to the function may be passed without being touched. These
are both meant mainly for functions that are interpreted by calling the Cornnion Lisp
functions directly. Functions that are simulated (using either cexpr or csubr def-
initions) do not make use of the cdr part of this property. For interpreted cexpr
definitions, if this property is present it overrides the normal time charged for a. func-
tion call.

17

7.2 Preprocessig of definiitionis

Csi,\i has it,; own version of defun. which stores the funlctionl definition of a syiiibol1 as its
cexpr Iprol)ert y. Before dloing so. it preprocesses the funct ion definition to perform thle
following t ranisforiat i01nS.

1. MIac ros are ex jani (ed wvlie ever thIey are recognized. This avoids having to exlpandl
t11(111 In the Int erpreteri.

2. Par-allel Lisp construicts (qiet. future, etc.) a-re converted to a form that assigns a
1nnlqiie lag to each process c reat ion p)oint . For examle. if a function foo contains
several (ails to future aii(I the second one is (future expr) then it is converted to
(f uture-tagged f oo2 expr). Whlen f uture-tagged is interp~reted, it, is treated just
likev f uture except Ithat th ti Iag is assignied to lhe new process that is created. Csim
keeps track of how mutch I iie is spent in each call to a process with a given tag. W~ith
this inforilat ion thle user call decide whether the lrocses created a~t each p)oint in
the lprogra in arie of aI rea soinable size.

It is possible for a mnacro to be encon ntcredl in i nterpretedl codle even after prep)rocessing;
if tb K occl- ii (i expl' ds it and then (lesitictivelv replaces the original formi by thle
exlpaiisioii. F Ii is a voids thbe overhead of' expaiidiiig the same expression each time it is
elncol n tecre(1.

Mal any of, thle basic Conmmon Lisp forms described in [8]J are miacros. Unfortunately,
differenit Hi I plene11iita 1 ionls of (oinion Lisp expandl these forms in different ways, causing
n1oticeablc chlIues InI the tiies charged blythe simutlator. Even more of a problem is that the
expl lsils mlay Use in ilplciiitaitioni-sl)ecific functions. Becauise of this, Cs!Mv must include
ttit ngi~in uat ion for fi ctious that are not p~art of standard Common Lisp, particularly
hose resmilti ig fromn expansions of setf.

('si.\ also has a special version of def struct, so that it canl perform preprocessing to
dlefine tiingil inifom-Imat ionl for the accessor. construictor. copier and predicate functions of
lie st rucl(t Ire- bein (1l.efiiiedl.

7.3 Interpreted priitives

Miall ' omimiomi Lisp fin nct ions Ina l c simulated by calling them dlirectly with the values
* of t heir a rgiinienti expressions. CS! Nt must b)e careful not to pass fuitures to these functions,

beca isc they, are niot p~art of Commnon Lisp. Therefore in most cases it "touches" arguments
before calling a Coninon Lisp function. This would hiave to be (lone anyway in a Lisp system
Ihlat iises fuit res. except for functions such a~s cons that do not depend onl the values of their

a rgiienits; for those cases we have included a mechanismn (the cinfo property described
* abloveC) to a\oihlii mijecessar rv 1.0mmcles.

Somei fim uctiomis caninot be calledl directly, however, becauise they reference objects other
luaii their (lirect argumnents, and these max' be futures. Consider, for instance, the cddr

funiction (cdr applhied twvice). Even if we ensure that the argument to cddr is not a future,
it may lbe a conis cell whose cdr is a fuiture, so calling Common Lisp)'s cddr would result
In aim error. usNIises anl interpreted definition of cddr and most other such functions for
tI his rva som.

Another class of functions that cannot be called directly is those whose running timie
depends ot the size (or some other properties) of their input. The equal and length
funlctionis are examples of this. CSisM uses interlpreted definitions of these funlctions akso.

7.4 Top level

To interact with the user, CSIM provides a read-eval-print loop. but the top-level evaiator
does a niuber of special things. It begins 1)y initializing the processor lata structures
and clearing all of the statistics counters. Then it creates an initial)rocess whose process
continuation is set to call CsiM's eval with the form to he evaluated. This process is
passed to initialization code for the scheduiler, which sets it u11p a.s read V to rIui, with no
other processes in the system. One of the processors is then chosen to begin the simulation.

While rulining, CSIM keeps track of the number of running processes. A process is said
to be running between the time it is created and the time it terminates, except when it
is suspended to wait for an event (such as a. future being determined). If the number of
running processes drops to zero, we halt the simulation and return to top level. Usually this
happens when the top-level process returns a. value (which is then printed) and terminates.
But there may still be other running processes at this point, because of futures that hmve
not vet been determined, or for other reasons. In this case, we continue simulation until
the number of running processes is zero.

7.5 Memory allocation and garbage collection

CcSl calls the underlying Common Lisp functions (cons etc.) to simulate memory allocation
by the prograim we are interpreting, and assumes that each such call takes a, constant amount

4 of time in a parallel machine. A real parallel Lisp can achieve this by giving each processor
a private pool of free cells to allocate from, so this is realistic.

CsIM does not model garbage collection at all, except to estimate its eventual cost and
include this in the simulated times for cons and other allocation functions. It assumes that
the garbage collector will achieve the same amount of parallelism as the rest of the program.

Parallel garbage collection is an important problem and there are many approaches
currently under investigation. However, we view this area of research as orthogonal to our
main interests, which are modelling the execution of processes and investigating partitioning
and scheduling algorithms.

8 Accuracy and performance

To produce meaningfil results, CsIM's timings must approximate those of an actual ma-
chine. And to be usable, the simulator must be fairly fast. This section describes the results
of some experiments done to see how well it meets these goals.

8.1 Accuracy of simulated times

To derive timings for basic Lisp operations, we compiled and ran a, set of small test programs.
Each consisted of a loop performing a primitive Lisp operation; one of these was a "no-op"
to measure the overhead of the loop code. Subtracting the time for the "no-op" test from
the time of cach other test, and dividing by the number of iterations of the loop, indicated

19

011-1 I1 • 1 1,1 1

how much time was spent in each function being tested. These tests were performed on a
single processor of an Alliant FX/8 running Lucid Conmmon Lisp' and scaled to a set of
small integer values. Here are some of these values:

Lexical var. ref. I

CDR I
+ 2

EQ 3
Function call ,1
Special var. ref. 5
CONS 15
* 17

We then ran several of the Gabriel benchmarks [2], first as ordinary compiled programs and
then using CsIM with the timings derived from the test programs. The table below shows,
for each program, the compiled time in seconds, the simulated time in units of 106 steps,
and the ratio of simulated time to compiled time. The compiled times are the average of
five runs of each program.

Compiled Simulated
Time Time Ratio

boyer 22.06 27.74 1.3
browse 19.63 41.02 2.1
ctak 1.56 3.26 2.1
dderiv 6.99 7.72 1.1
deriv 5.96 7.15 1.2
destructive 2.18 7.89 3.6
div test-I 2.63 4.22 1.6
div test-2 3.44 3.62 1.1
stak 6.09 2.39 0.4
tak 0.53 1.11 2.1
takl 2.04 8.39 4.1
takr 0.72 1.11 1.5

The accuracy of our simulator is reflected by how close the ratios are to each other. They
are not as close as we might like, but they are all of the same general order of magnitude.

PTo account for the differences, we can provide several explanations:

e CsiM's interpreter sometimes performs different operations than the compiled code.
For example, CsIM does not optimize the evaluation of common subexpressions, and
charges for each reference to a variable, whereas in compiled code some of these might
be eliminated. The most extreme ratios each have an explanation of this sort:

- destructive contains do loops that the compiler can optimize, while CSIM treats
them as ordinary loops performing index computation and conditional branches.

-Actually, we used a version of the Qlisp system in development on the Alliant, running on a single
processor. In this Lisp, memory allocation and special variable references are somewhat slower than a Lisp
designed for only one processor would be.

20

- stak uses special variables, which are quite slow ol the version of Lisp that we
used. The compiled code uses deep binding, which takes a varyiig amount of
time per reference, while CsiM charges a constant amount of time.

- takl does a lot of tail-recursive function calling, which is optimized by the com-
piler.

9 CSIM pretends that garbage collection time is a constant multiple of the time spent in
allocation functions, by including it in the cost of these functions. This is not accurate:
a. copying garbage collector takes time prol)ortional to the amount of memnory in use
when it is called, which may be large or small depending on the program being tested.

8.2 Speed of the simulator

Next we will compare the speed of CSIM itself with the speed of compiled code that it is
simulating. The computation of function timing statistics (see section 4.6) was disabled
during these tests; turning it on slows CsIM by an extra factor of 2 or more. We also ran
the programs through the Lucid Common Lisp interpreter for comparison.

The times in the table below are all in seconds. The CsIM runtimes are the average
of three runs, except for bover and browse which were only run once. The runtimes for
interpreted and compiled code are the average of five runs.

CSIM Interpreted Compiled
Runtime Time Ratio Time Ratio

boyer 9441.32 1313.54 7.2 22.06 428
browse 12125.03 1142.68 10.6 19.63 618
ctak 488.61 94.65 5.2 1.56 313
dderiv 1105.40 103.66 10.7 6.99 158
deriv 1192.60 116.65 10.2 5.96 200
destructive 2315.31 244.35 9.5 2.18 1062
div test-1 1406.86 207.71 6.8 2.63 535
div test-2 999.59 118.05 8.5 3.44 291
stak 475.61 107.76 4.4 6.09 78
tak 433.87 65.67 6.6 0.53 818
takl 3230.16 582.13 5.5 2.04 1583
takr 456.09 66.67 6.8 0.72 633

During these tests there was some variation in running conditions. Running time on the
Alliant genernlly increases when several programs are executing simultaneously. This is
probably due to contention for the cache, which is shared between its processors. This
factor makes as much as a 10% difference, so the figures above should be taken as rough
approximations.

In some of the tests there was a significant amount of garbage collection. Enough
memory was allocated to limit the garbage collection to once every few seconds, but not so
much as to cause paging of the Lisp process.

CsIm generally took 300 to 1000 times as long as the compiled version of the code it
was interpreting, i.e., 5 to 15 minutes to simulate a second of compiled code.

The comparison with thc Lucid interpreter shows much less variation in the speed ratio,
reflecting the fact that CsiM and an ordinary interpreter do similar things with a program.

21

I6lII iii i

In general. ('sl is about .5 to 10 tines slower tlhan the interpreter. wlicli is a reasonable
price to pay' for the extra work that C(SIm does to handle parallel p)rograms.

Both CqiSM and the Lucid interpreter spend a lot of time doing storage allocation and
garbage collection. The Lucid interpreter dynamically allocates lexical environments just
as (si m does [13], but it uses a stack for dynamic binding and function calls. (slm spends
much of its tinme creating lexical closures for use as continuations. It runs)est when given a
lot of free storage. since this decreases the frequency of garbage collection. But the physical

memnor of the machine provides a limit to the amount of useful storage we can allocate;
once I his is exceeded and we start paging. performance drops tremendouslv.

Although these tests simulated only one processor. they are indicative of the times that
we get simulating parallel programs, since none of the code to manage concurrency has been
removed. The time to simulate a parallel program is roughly proportional to the product of
the number of processors we are simulating and the parallel runtinme. with the same ratio as
above, as long as most of the processors are doing useful work. Simulating idle processors
turns out to be more expensive than simulating processors running ordinary code, because
they are generally in a loop referencing memory (checking a queue for work to do), and each
such reference must be serialized as described in section 6.1. We could probably modify
CSI NI to avoid this source of inefficiency, but the difference does not seem worth the effort
it would require.

9 A Parallel example

As an examlple of how CsIM is used, we will try to apply parallelism to the boyer benchmark.
toyer {2, pp. 116 135] is a simple theorem prover that works by rewriting a formula into a.
canonical form (a structure of nested if-expressions), and then applying a. tautology checker
to the result.

Coniverting bo'ver to a parallel program is mainly an exercise; it is unlikely that anyone
will want to use the result. This is because there are better -gorithms to do what boyer
does, so it would pay to start from scratch and write a good parallel theorem prover. Still,
the case of parallelizing an existing sequential program is an important one, and we expect
to see it come up fairly often.

We begin with little knowledge of where the program spends its time. The first step,
therefore, is to simulate it running as a sequential program oil one processor and look at the
function timing statistics (section 1.6). Unfortunately, the benchmark a.s given takes too
imuch time and memory for easy experimentation; a single run through CsIM with statistics
gathering turned on takes about 20 hours and causes a large amount of paging. Therefore
we will modify it to create a faster test.

The top level of the program is a function called test, which first constructs a. term by
calling

(apply-subst
(quote ((x f (plus (plus a b)

(plus c (zero))))

(y f (times (times a b)
(plus c d)))

(z f (reverse (append (append a b)

22

I I 4 1l111 11 .. . 1 1

(nil))))
(u equal (plus a b)

(difference x y))

(w lessp (remainder a b)
(member a (length b)))))

(quote (implies (and (implies x y)

(and (implies y z)

(and (implies z u)
(implies u w)

(implies x w)

and then calls tautp, the main function of te theorem prover. with this term. Our sinipli-
fied test case uses instead the term

(apply-subst
(quote ((x f (plus (plus a b)

(plus c (zero))))
(y f (times (times a b)

(plus c d)))
(z f (reverse (append (append a b)

(nil))))))

(quote (implies (and (implies x y)
(implies y z))

(implies x z))))

Running this test through CsIM, we get three sets of function timing statistics. First,
for each function we have the amount of time spent just in that function:

ONE-WAY-UNIFYI 358379 36.5%
REWRITE-WITH-LEMMAS 145404 14.8%
ONE-WAY-UNIFY1-LST 127357 13.0.
REWRITE 115362 11.7.
REWRITE-ARGS 91899 9.3%
ONE-WAY-UNIFY 66324 6.7.
ASSQ 49480 5.0.
APPLY-SUBST-LST 12504 1.3
APPLY-SUBST 10442 1.1%

Next, we have the time spent in each function including other functions that it calls:

TEST 983065 100.0%
TAUTP 982079 99.9%
REWRITE 976180 99.3%
REWRITE-WITH-LEMMAS 973337 99.0

REWRITE-ARGS 972961 99.0
ONE-WAY-UNIFY 635750 64.7

ONE-WAY-UNIFYI 608115 61.9
ONE-WAY-UNIFY1-LST 420197 42.7

23

'P

ASSQ 179506 18.37.
APPLY-SUBST 38393 3.97.
APPLY-SUBST-LST 37718 3.8%

TAUTOLOGYP 5899 0.6%

Finally, we have the average time per call to each function.

TEST 983065.0 (1 call)
TAUTP 982079.0 (1 call)
REWRITE 4083.7 (2595 calls)

TAUTOLOGYP 3038.5 (13 calls)
REWRITE-ARGS 2486.4 (4626 calls)
REWRITE-WITH-LEMMAS 907.2 (7559 calls)
APPLY-SUBST-LST 280.3 (494 calls)
APPLY-SUBST 231.2 (394 calls)

TRUEP 158.4 (24 calls)
ONE-WAY-UNIFY 115.0 (5527 calls)
FALSEP 110.4 (19 calls)
ASSQ 83.5 (2798 calls)
ONE-WAY-UNIFY1L 73.0 (12951 calls)
ONE-WAY-UNIFY1-LST 72.0 (7513 calls)

From these statistics, we see that most of the time is spent in rewrite and one-way-unify
and their subsidiary functions. But the calls to one-way-unify are, on the average, much
smaller than calls to rewrite. This suggests that we should try to parallelize calls to
rewrite, since this will create processes of larger size and thus reduce the process creation
overhead. If this does not achieve enough speedup, we will look at calls to one-way-unify.

Notice that the first set of statistics, which is what ordinary "profiling" of the program
would produce, tells us that one-way-unifyl accounts for a large portion of the execution
time, but it does not tell us that calls to this function are parts of higher-level tasks. Thus,
it does not tell us as much about the places to look for effective use of parallelism as the
second set of statistics does.

Before we investigate rewrite, we must notice that boyer contains some uses of global
(special) variables that would cause improper sharing of data in parallel processes. One of

• these is easy to fix: the variable temp-temp, declared special with a defvar at the beginning
of the program, is used only as a local temporary variable in the functions apply-subst and
one-way-unifyl. By removing the defvar and adding &aux temp-temp to the parameter
lists of these functions, we avoid the use of the global variable.

The other global variable, unify-subst, is a bit more difficult to deal with. It is used
in the following way:

(defun rewrite-with-lemmas (term 1st)
(cond ((null ist)

term)
((one-way-unify term (cadr (car 1st)))
(rewrite (apply-subst unify-subst (caddr (car 1st)))))

(t (rewrite-with-lemmas term (cdr 1st)))))

24

0gVI

Eacl call to one-way-unify sets unify-subst to NIL, and then incrementally modifies it (in
one-way-unifyl). When one-way-unify rettirns. unify-subst contains a list which is ref-
erenced l)y the code shown above, and then there are no further references. Since we are go-
ing to parallelize calls to rewrite, several processes may be running rewrite-with-lemmas
at the same time and they should not share the same global variable.

CsM's definition of dynamic binding (see section 5.1) makes it possible to establish a.
separate instance of unify-subst for each call to one-way-unify, as follows:

(defun rewrite-with-lemmas (term ist)

(let ((unify-subst nil))
(cond ((null Ist)

term)

((one-way-unify term (cadr (car 1st)))

(rewrite (apply-subst unify-subst (caddr (car ist)))))
(t (rewrite-with-lemmas term (cdr 1st))))))

Recall that unify-subst is a special variable because of the defvar at the beginning of the
program. If rewrite-with-lemmas is called concurrently in different processes, they will
each perfo-m a. dynamic binding of unify-subst, which will be invisible to other processes
because each establishes a new dynamic environment. Thus, the references to unify-subst
in one-way-unify will not interfere with each other.

Having made these changes, we now proceed to examine rewrite and rewrite-args.

(defun rewrite (term)

(cond ((atom term)
term)

(t (rewrite-with-lemmas (cons (car term)

(rewrite-args (cdr term)))

(get (car term)
(quote lemmas))))))

(defun rewrite-args (ist)

(cond ((null Ist)

nil)
(t (cons (rewrite (car 1st))

(rewrite-args (cdr 1st))))))

The main potential for parallelism here is in rewrite-args, which performs independent

computations on each member of the list given as its argument. We can create a separate
process for each one of these. We can also use futures to return a value from rewrite-args
before these processes finish, which may add some more parallelism.

A single change to the function accomplishes this:

(defun rewrite-args (1st)

(cond ((null lst)

nil)
(t (cons (future (rewrite (car 1st)))

(rewrite-args (cdr lst))))))

25

4

\When we run the resulting program through CSIM, we get the following results:6

of Running Speedup Speedup Useful Idle Other
Proc. Time vs. 1 proc. vs. serial Work Overhead Overhead

1 1367478 1.00 0.72 0.72 0.13 0.15
2 704366 1.94 1.40 0.70 0.15 0.15
3 491812 2.78 2.00 0.67 0.19 0.15

4 396999 3.44 2.48 0.62 0.22 0.16
5 346768 3.94 2.84 0.57 0.27 0.17
10 310896 4.40 3.16 0.32 0.50 0.18
1.5 315602 4.33 3.12 0.21 0.63 0.17
20 299398 4.57 3.28 0.16 0.68 0.15

Csi i provides the "running time" and "idle overhead" data, and we have computed the
other numbers in the table from these. Speedup versus one processor is the time for the
parallel program on one processor divided by the time on n processors. Speedup versus the
serial program is a more meaningful measure, since it accounts for overhead in the parallel
program that we must try to avoid. The serial program's time is 983065 steps, as computed
in the earlier simulator run.

The last three columns show the fractions of processor time spent doing useful work and
overhead of various sorts. Useful work is the speedup vs. the serial time, divided by the
number of processors. This number stays well below 1.00 because of overhead in the parallel
program. For each future, the.parallel program does extra work to create the future, to add
a process to the queue, to remove it when a processor becomes idle, and to reference data
indirectly through the future. The costs of future creation and adding processes are part
of the "other overhead" above. The costs of finding processes in the queue and removing
them are counted in "idle overhead." Idle overhead also counts time spent waiting for the
lock on the queue, and time when there is no work for a processor to do.

Beyond about 10 processors, there is simply not enough work to keep all the processors
busy, and the idle overhead begins to climb rapidly, while the "other overbhad" fraction
drops because the idle processors are not doing the operations that are charged to that
category.

This is just a first step; with further work on the program, we can try to minimize the
overhead of the parallelism we have added, and also find more parallel work as the number
of processors increases. The results presented in [12] continue this investigation.

10 Acknowledgements

The original Maclisp simulator for Qlisp [3], written by Dick Gabriel, provided a number
of ideas iised in CsIM. Ramin Zabih suggested using a continuation passing interpreter as
the basis for CSIM. This considerably simplified its previous design.

IHiroshi Okuno, Dan Pehoushek, Arkady Rabinov and Igor Rivin served as guinea pigs
and users of CSIM and have contributed many useful ideas and improvements. Carolyn

e(:SIMs default LIFO scheduler was used for these tests. Different results would be obtained using the

FIFO schednler, or if we changed FUTURE to DFUTURE. This is mainly because a reference to an undetermined
future causes extra overhead, and the order in which processes are scheduled decides whether the values of
futures are computed by the time they are referenced.

26

04-O M i 11 R 6 --- --

Talcott provided comments on several drafts of this paper, as did some of the people named
above.

References

[1] Harold Abelson and Gerald Jay Sussman with Julie Sussman. Structure and Interpre-
tation of Computer Programs. MIT Press, Cambridge, Massachusetts, 1985.

[21 Richard P. Gabriel. Performance and Evaluation of Lisp Systems. Computer Systems
Series, MIT Press, Cambridge, Massachusetts, 1985.

[3] Richard P. Gabriel and John McCarthy. Queue-based multiprocessing Lisp. In Con-
ference Record of the 1984 ACM' Symposium on Lisp and Functional Programming,
pages 25-44, Austin, Texas. August 1984.

[41 Michael J. C. Gordon. The Denotational Description of Programming Languages.
Springer-Verlag, New York, 1979.

[5] Robert H. Halstead. Multilisp: A language for concurrent symbolic computation. ACMV
*Transactions on Programming Languages and Systems, 7(4):501-538, October 1985.

[6] David Jefferson. Virtual time. A CM 'Transactions on Programming Languages and
Systems, 7(3), July 1985.

[7] James S. Miller. MultiScheme: A Parallel Processing System Based on MIT Scheme.
PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, August
1987.

[8] Guy L. Steele Jr. Common Lisp: The Language. Digital Press, Burlington, Mas-
sachusetts, 1984.

[9] Guy L. Steele Jr. and Gerald J. Sussman. LAMBDA: The Ultimate Imperative. AI
Memo 353, MIT Artificial Intelligence Laboratory, Cambridge, Massachusetts, March
1976.

[101 Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory. MIT Press, Cambridge, Massachusetts, 1977.

[11] Mitchell Wand. Continuation based multiprocessing. In Conference Record of the 1980
LISP Conference, Stanford, California, August 1980.

[12] Joseph S. Weening. Parallel Execution of Lisp Programs. PhD thesis, Stanford Uni-
versity, Stanford, California. In preparation.

[13] Jon L. White. Personal communication.

27

!10U11 '&111'"'

00O

Ell

